
v“Statistics may be rightly called the science of averages and their

estimates.” – A.L.BOWLEY & A.L. BODDINGTON v

13.1  Introduction

We know that statistics deals with data collected for specific

purposes. We can make decisions about the data by

analysing and interpreting it. In earlier classes, we have

studied methods of representing data graphically and in

tabular form. This representation reveals certain salient

features or characteristics of the data. We have also studied

the methods of finding a representative value for the given

data. This value is called the measure of central tendency.

Recall mean (arithmetic mean), median and mode are three

measures of central tendency. A measure of central

tendency gives us a rough idea where data points are

centred. But, in order to make better interpretation from the

data, we should also have an idea how the data are scattered or how much they are

bunched around a measure of central tendency.

Consider now the runs scored by two batsmen in their last ten matches as follows:

Batsman A : 30, 91,  0, 64, 42, 80, 30, 5, 117,  71

Batsman B : 53, 46, 48, 50, 53, 53, 58, 60, 57, 52

Clearly, the mean and median of the data are

Batsman A Batsman B

Mean 53 53

Median 53 53

Recall that, we calculate the mean of a data (denoted by x ) by dividing the sum

of the observations by the number of observations, i.e.,
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Also, the median is obtained by first arranging the data in ascending or descending

order and applying the following rule.

If the number of observations is odd, then the median is  

th
1

2

n + 
 
 

 observation.

If the number of observations is even, then median is  the mean of 

th

2

n 
 
 

 and

th

1
2

n + 
 

 observations.

We find that the mean and median of the runs scored by both the batsmen A and

B are same i.e., 53. Can we say that the performance of two players is same? Clearly

No, because the variability in the scores of batsman A is from 0 (minimum) to 117

(maximum). Whereas, the range of the runs scored by batsman B is from 46 to 60.

Let us now plot the above scores as dots on a number line. We find the following

diagrams:

For batsman A

For batsman B

We can see that the dots corresponding to batsman B are close to each other and

are clustering around the measure of central tendency (mean and median), while those

corresponding to batsman A are scattered or more spread out.

Thus, the measures of central tendency are not sufficient to give complete

information about a given data. Variability is another factor which is required to be

studied under statistics. Like ‘measures of central tendency’ we want to have a

single number to describe variability. This single number is called a ‘measure of

dispersion’. In this Chapter, we shall learn some of the important measures of dispersion

and their methods of calculation for ungrouped and grouped data.

Fig 13.1

Fig 13.2
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13.2  Measures of Dispersion

The dispersion or scatter in a data is measured on the basis of the observations and the

types of the measure of central tendency, used there. There are following measures of

dispersion:

(i) Range, (ii) Quartile deviation, (iii) Mean deviation, (iv) Standard deviation.

In this Chapter, we shall study all of these measures of dispersion except the

quartile deviation.

13.3 Range

Recall that, in the example of runs scored by two batsmen A and B, we had some idea

of variability in the scores on the basis of minimum and maximum runs in each series.

To obtain a single number for this, we find the difference of maximum and minimum

values of each series. This difference is called the ‘Range’ of the data.

In case of batsman A, Range = 117 – 0 = 117 and for batsman B, Range = 60 – 46 = 14.

Clearly, Range of A > Range of B. Therefore, the scores are scattered or dispersed in

case of A while for B these are close to each other.

Thus, Range of a series = Maximum value – Minimum value.

The range of data gives us a rough idea of variability or scatter but does not tell

about the dispersion of the data from a measure of central tendency. For this purpose,

we need some other measure of variability. Clearly, such measure must depend upon

the difference (or deviation) of the values from the central tendency.

The important measures of dispersion, which depend upon the deviations of the

observations from a central tendency are mean deviation and standard deviation. Let

us discuss them in detail.

13.4 Mean Deviation

Recall that the deviation of an observation x from a fixed value ‘a’ is the difference

x – a. In order to find the dispersion of values of x from a central value ‘a’ , we find the

deviations about a. An absolute measure of dispersion is the mean of these deviations.

To find the mean, we must obtain the sum of the deviations. But, we know that a

measure of central tendency lies between the maximum and the minimum values of

the set of observations. Therefore, some of the deviations will be negative and some

positive. Thus, the sum of deviations may vanish. Moreover, the sum of the deviations

from mean ( x ) is zero.

Also Mean of deviations 
Sum of deviations 0

0
Number of observations n

= = =

Thus, finding the mean of deviations about  mean is not of any use for us, as far

as the measure of dispersion is concerned.
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Remember that, in finding a suitable measure of dispersion, we require the distance

of each value from a central tendency or a fixed number ‘a’. Recall, that the absolute

value of the difference of two numbers gives the distance between the numbers when

represented on a number line. Thus, to find the measure of dispersion from a fixed

number ‘a’ we may take the mean of the absolute values of the deviations from the

central value. This mean is called the ‘mean deviation’. Thus mean deviation about a

central value ‘a’  is the mean of the absolute values of the deviations of the observations

from ‘a’. The mean deviation from ‘a’ is denoted as M.D. (a). Therefore,

M.D.(a) = 
Sum of absolute values of deviations from ' '

Number of observations

a
.

Remark  Mean deviation may be obtained from any measure of central tendency.

However, mean deviation from mean and median are commonly used in statistical

studies.

Let us now learn how to calculate mean deviation about mean and mean deviation

about median for various types of data

13.4.1  Mean deviation for ungrouped data  Let  n observations be x
1
, x

2
, x

3
, ...., x

n
.

The following steps are involved in the calculation of mean deviation about mean or

median:

Step 1 Calculate the measure of central tendency about which we are to find the mean

deviation. Let it be ‘a’.

Step 2  Find the deviation of each x
i 
from a, i.e., x

1 
– a, x

2 
– a, x

3 
– a,. . . , x

n
– a

Step 3 Find the absolute values of the deviations, i.e., drop the minus sign (–), if it is

there, i.e., axaxaxax n −−−− ....,,,, 321

Step 4 Find the mean of the absolute values of the deviations. This mean is the mean

deviation about a, i.e.,

1( )M.D.

n

i

i

x a

a
n

=

−

=
∑

Thus M.D. ( x ) =
1

1 n

i

i

x x
n =

−∑ , where x = Mean

and M.D. (M) =
1

1
M

n

i

i

x
n =

−∑ , where M = Median
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ANote   In this Chapter,  we shall use the symbol M to denote median unless stated

otherwise.Let us now illustrate the steps of the above method in following examples.

Example 1 Find the mean deviation about the mean for the following data:

6, 7, 10, 12, 13, 4, 8, 12

Solution We proceed step-wise and get the following:

Step 1  Mean of the given data is

6 7 10 12 13 4 8 12 72
9

8 8
x

+ + + + + + +
= = =

Step 2  The deviations of the respective observations from the mean ,x  i.e., x
i
– x are

6 – 9, 7 – 9, 10 – 9, 12 – 9, 13 – 9, 4 – 9, 8 – 9, 12 – 9,

or    –3, –2, 1, 3, 4, –5, –1, 3

Step 3 The absolute values of the deviations, i.e., ix x−  are

   3, 2, 1, 3, 4, 5, 1, 3

Step 4 The required mean deviation about the mean is

M.D. ( )x  =

8

1

8

i

i

x x
=

−∑

=
3 2 1 3 4 5 1 3 22

2 75
8 8

.
+ + + + + + +

= =

ANote   Instead of carrying out the steps every time, we can carry on calculation,

step-wise without referring to steps.

Example 2 Find the mean deviation about the mean for the following data :

12, 3, 18, 17, 4, 9, 17, 19, 20, 15, 8, 17, 2, 3, 16, 11, 3, 1, 0, 5

Solution We have to first find the mean ( x ) of the given data

20

1

1

20
i

i

x x
=

= ∑  = 
20

200
  =  10
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The respective absolute values of the deviations from mean, i.e., xxi −  are

2, 7, 8, 7, 6, 1, 7, 9, 10, 5, 2, 7, 8, 7, 6, 1, 7, 9, 10, 5

Therefore

20

1

124i

i

x x
=

− =∑

and M.D. ( x ) = 
124

20
= 6.2

Example 3 Find the mean deviation about the median for the following data:

3, 9, 5, 3, 12, 10, 18, 4, 7, 19, 21.

Solution  Here the number of observations is 11 which is odd. Arranging the data into

ascending order, we have  3, 3, 4, 5, 7, 9, 10, 12, 18, 19, 21

Now Median  = 

th
11 1

2

+ 
 
 

 or 6th observation = 9

The absolute values  of  the respective deviations from the median, i.e., Mix −  are

6, 6, 5, 4, 2, 0, 1, 3, 9, 10, 12

Therefore

11

1

M 58i

i

x
=

− =∑

and ( )
11

1

1 1
M.D. M M 58 5.27

11 11
i

i

x
=

= − = × =∑

13.4.2  Mean deviation  for grouped data We know that data can be grouped into

two ways :

(a) Discrete frequency distribution,

(b) Continuous frequency distribution.

Let us discuss the method of finding mean deviation for both types of the data.

(a)  Discrete frequency distribution  Let the given data consist of n distinct values

x
1
, x

2
, ..., x

n
 occurring with frequencies f

1
, f

2 
, ..., f

n
 respectively. This data can be

represented in the tabular form as given below, and is called discrete frequency

distribution:

x : x
1

  x
2

x
3
 ... x

n

f : f
1

  f
2

f
3
 ... f

n
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(i)  Mean deviation about mean

First of all we find the mean x of the given data by using the formula

1

1

1

1

N

n

i i n
i

i in
i

i

i

x f

x x f

f

=

=

=

= =
∑

∑
∑

,

where ∑
=

n

i

ii fx
1

 denotes the sum of the products of observations x
i 
with their respective

frequencies f
i
 and ∑

=

=
n

i

if
1

N  is the sum of the frequencies.

Then, we find the deviations of observations x
i 
from the mean x and take their

absolute values, i.e., xxi − for all i =1, 2,..., n.

After this, find the mean of the absolute values of the deviations, which is the

required mean deviation about the mean. Thus

1

1

M.D. ( )

n

i i

i

n

i

i

f x x

x

f

=

=

−
=
∑

∑
  = xxf i

n

i

i −∑
=1N

1

(ii) Mean deviation about median To find mean deviation about median, we find the
median of the given discrete frequency distribution. For this the observations are arranged

in ascending order. After this the cumulative frequencies are obtained. Then, we identify

the observation whose cumulative frequency is equal to or just greater than 
N

2
, where

N is the sum of frequencies. This value of the observation lies in the middle of the data,
therefore, it is the required median. After finding median, we obtain the mean of the

absolute values of the deviations from median.Thus,

1

1
M.D.(M) M

N

n

i i

i

f x
=

= −∑
Example 4 Find mean deviation about the mean for the following data :

x
i

2 5 6 8 10 12

f
i

2 8         10 7   8   5
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Solution Let us make a Table 13.1 of the given data and append other columns after

calculations.

Table 13.1

x
i

f
i

f
i
x

i
xxi − f

i
xxi −

2 2 4 5.5 11

5 8 40 2.5 20

6 10 60 1.5 15

8 7 56 0.5 3.5

10 8 80 2.5 20

12 5 60 4.5 22.5

40 300     92

40N
6

1

==∑
=i

if ,   300
6

1

=∑
=i

ii xf ,   92
6

1

=−∑
=

xxf i

i

i

Therefore

6

1

1 1
300 7.5

N 40
i i

i

x f x
=

= = × =∑

and
6

1

1 1
M. D. ( ) 92 2.3

N 40
i i

i

x f x x
=

= − = × =∑

Example 5 Find the mean deviation about the median for the following data:

x
i

3 6 9 12 13 15 21 22

f
i

3 4 5 2 4 5 4 3

Solution The given observations are already in ascending order. Adding a row

corresponding to cumulative frequencies to the given data, we get (Table 13.2).

Table 13.2

x
i

3 6 9 12 13 15 21 22

f
i

3 4 5 2 4 5 4 3

c.f. 3 7 12 14 18 23 27 30

Now, N=30 which is even.
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Median is the mean of the 15th and 16th observations. Both of these observations

lie in the cumulative frequency 18, for which the corresponding observation is 13.

th th
15 observation 16 observation 13 13

Therefore,  Median M 13
2 2

+ +
= = =

Now, absolute values of the deviations from median, i.e., Mix −  are shown in

Table 13.3.
Table 13.3

Mix − 10 7 4 1 0 2 8 9

f
i

3 4 5 2 4 5 4 3

f
i

Mix − 30 28 20 2 0 10 32 27

We have

8 8

1 1

30   and M 149i i i

i i

f f x
= =

= − =∑ ∑

Therefore             
8

1

1
M. D. (M) M

N
i i

i

f x
=

= −∑

        =
1

149
30

×  = 4.97.

(b) Continuous frequency distribution A continuous frequency distribution is a series

in which the data are classified into different class-intervals without gaps alongwith

their respective frequencies.

For example, marks obtained by 100 students are presented in a continuous

frequency distribution as follows :

Marks obtained 0-10 10-20 20-30 30-40 40-50 50-60

Number of Students 12 18 27 20 17 6

(i) Mean deviation about mean While calculating the mean of a continuous frequency

distribution, we had made the assumption that the frequency in each class is centred at

its mid-point. Here also, we write the mid-point of each given class and proceed further

as for a discrete frequency distribution to find the mean deviation.

Let us take the following example.
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Example 6 Find the mean deviation about the mean for the following data.

Marks obtained 10-20 20-30 30-40 40-50 50-60 60-70 70-80

Number of students 2 3 8 14 8 3 2

Solution We make the following Table 13.4 from the given data :

Table 13.4

Marks Number of Mid-points f
i
x

i
xxi −  f

i
xxi −

obtained students

f
i

x
i

10-20 2 15 30 30 60

20-30 3 25 75 20 60

30-40 8 35 280 10 80

40-50 14 45 630 0 0

50-60 8 55 440 10 80

60-70 3 65 195 20 60

70-80 2 75 150 30 60

40 1800 400

Here

7 7 7

1 1 1

N 40, 1800, 400i i i i i

i i i

f f x f x x
= = =

= = = − =∑ ∑ ∑

Therefore

7

1

1 1800
45

N 40
i i

i

x f x
=

= = =∑

and ( )
7

1

1 1
M.D. 400 10

N 40
i i

i

x f x x
=

= − = × =∑

Shortcut method for calculating mean deviation about mean We can avoid the

tedious calculations of computing x by following step-deviation method. Recall that in

this method, we take an assumed mean which is in the middle or just close to it in the

data. Then deviations of the observations (or mid-points of classes) are taken from the
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assumed mean. This is nothing but the shifting of origin from zero to the assumed mean

on the number line, as shown in Fig 13.3

If there is a common factor of all the deviations, we divide them by this common

factor to further simplify the deviations. These are known as step-deviations. The

process of taking step-deviations is the change of scale on the number line as shown in

Fig 13.4

The deviations and step-deviations reduce the size of the observations, so that the

computations viz. multiplication,  etc., become simpler. Let, the new variable be denoted

by 
h

ax
d i

i

−
= , where ‘a’ is the assumed mean and h is the common factor. Then, the

mean  x by step-deviation method is given by

  
1

N

n

f di i
ix a h

∑
== + ×

Let us take the data of Example 6 and find the mean deviation by using step-

deviation method.

Fig 13.3

Fig 13.4
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Number of
students

Marks
obtained

Take the assumed mean a = 45 and h = 10, and form the following Table 13.5.

Table 13.5

Mid-points
45

10

i
i

x
d

−
=

i if d xxi − f
i

xxi −

f
i

x
i

10-20 2 15 – 3 – 6 30 60

20-30 3 25 – 2 – 6 20 60

30-40 8 35 – 1 – 8 10 80

40-50 14 45 0 0 0 0

50-60 8 55 1 8 10 80

60-70 3 65 2 6 20 60

70-80 2 75 3 6 30 60

40 0 400

Therefore

7
  

1 
N

 
f di i

ix a h

∑
== + ×

  = 
0

45 10 45
40

+ × =

and      
7

1

1 400
M D ( ) 10

N 40
i i

i

x f x x
=

= − = =∑. .

ANote   The step deviation method is applied to compute x . Rest of the procedure

is same.

(ii) Mean deviation about  median The process of finding the mean deviation about

median for a continuous frequency distribution is similar as we did for mean deviation

about the mean. The only difference lies in the replacement of the mean by median

while taking deviations.

Let us recall the process of finding  median for a continuous frequency distribution.

The data is first arranged in ascending order. Then, the median of continuous

frequency distribution is obtained by first identifying the class in which median lies

(median class) and then applying the formula
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frequency

N
C

2Median l h
f

−
= + ×

where median class is the class interval whose cumulative frequency is just greater

than or equal to
N

2
, N is the sum of frequencies, l, f, h and C  are, respectively the lower

limit , the frequency, the width of the median class and  C the cumulative frequency of

the class just preceding the median class. After finding the median, the absolute values

of the deviations of mid-point x
i
 of each class from the median i.e., Mix −  are obtained.

Then
1

M.D. (M) M
1N

n
f xi i

i
= −∑

=
The process is illustrated in the following example:

Example 7 Calculate the mean deviation about median for the following data :

Class 0-10 10-20 20-30 30-40 40-50 50-60

Frequency 6 7 15 16 4 2

Solution Form the following Table 13.6 from the given data :

Table 13.6

Class Frequency Cumulative Mid-points Med.xi − f
i

Med.xi −

f
i

(c.f.) x
i

0-10 6 6 5 23 138

10-20 7 13 15 13 91

20-30 15 28 25 3 45

30-40 16 44 35 7 112

40-50 4 48 45 17 68

50-60 2 50 55 27 54

50 508
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The class interval containing 

th
N

2
or 25th item is 20-30. Therefore, 20–30 is the median

class. We know that

Median = 

N
C

2l h
f

−
+ ×

Here l = 20, C = 13, f  = 15, h = 10 and N = 50

Therefore, Median 
25 13

20 10
15

−
= + ×  = 20 + 8 = 28

Thus, Mean deviation about median is given by

M.D. (M) = 
6

1

1
M

N
i i

i

f x
=

−∑  = 
1

508
50

×  = 10.16

EXERCISE 13.1

Find the mean deviation about the mean for the  data in Exercises 1 and 2.

1. 4, 7, 8, 9, 10, 12, 13, 17

2. 38, 70, 48, 40, 42, 55, 63, 46, 54, 44

Find the mean deviation about the median for the  data in Exercises 3 and 4.

3. 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17

4. 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

Find the mean deviation about the mean  for the data in Exercises 5 and 6.

5. x
i

5 10 15 20 25

f
i

7 4 6 3 5

6. x
i

10 30 50 70 90

f
i

4 24 28 16 8

Find the mean deviation about the  median  for the data in Exercises 7 and 8.

7. x
i

5 7 9 10 12 15

f
i

8 6 2 2 2 6

8. x
i

15 21 27 30 35

f
i

3 5 6 7 8
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Find the mean deviation about the mean for the data in Exercises 9 and 10.

9. Income per 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800

  day in `

 Number 4 8 9 10 7 5 4 3

of persons

10.    Height 95-105 105-115 115-125 125-135 135-145 145-155

    in cms

Number of 9 13 26 30 12 10

     boys

11. Find the mean deviation about median for the following data :

   Marks 0-10 10-20 20-30 30-40 40-50 50-60

Number of 6 8 14 16 4 2

     Girls

12. Calculate the mean deviation about median age for the age distribution of 100

persons given below:

   Age 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55

(in years)

 Number 5 6 12 14 26 12 16 9

[Hint  Convert the given data into continuous frequency distribution by subtracting 0.5

from the lower limit and adding 0.5 to the upper limit of each class interval]

13.4.3  Limitations of mean deviation  In a series, where the degree of variability is

very high, the median is not a representative central tendency. Thus, the mean deviation

about median calculated for such series can not be fully relied.

The sum of the deviations from the mean (minus signs ignored) is more than the sum

of the deviations from median. Therefore, the mean deviation about the mean is not very

scientific.Thus, in many cases, mean deviation may give unsatisfactory results. Also mean

deviation is calculated on the basis of absolute values of the deviations and therefore,

cannot be subjected to further algebraic treatment. This implies that we must have some

other measure of dispersion. Standard deviation is such a measure of dispersion.

13.5 Variance and Standard Deviation

Recall that while calculating mean deviation about mean or median, the absolute values

of the deviations were taken. The absolute values were taken to give meaning to the

mean deviation, otherwise the deviations may cancel among themselves.

Another way to overcome this difficulty which arose due to the signs of deviations,

is to take squares of all the deviations. Obviously all these squares of deviations are
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non-negative. Let x
1
, x

2
, x

3
, ..., x

n
 be n observations and x  be their mean. Then

2

2 2 2 2

1

1

( ) ( ) ....... ( ) ( )
n

n i

i

x x x x x x x x
=

− + − + + − = − .

If this sum is  zero, then each )( xxi − has to be zero. This implies that there is no

dispersion at all as all observations are equal to the mean x .

If ∑
=

−
n

i

i xx
1

2)( is small , this indicates that the observations x
1
, x

2
, x

3
,...,x

n
 are

close to the mean x and therefore, there is a lower degree of dispersion. On the

contrary, if this sum is large, there is a higher degree of dispersion of the observations

from the mean x . Can we thus say that the sum ∑
=

−
n

i

i xx
1

2)(  is a reasonable indicator

of the degree of dispersion or scatter?

Let us take the set A of six observations 5, 15, 25, 35, 45, 55. The mean of the

observations is x = 30. The sum of squares of deviations from x for this set is

∑
=

−
6

1

2)(
i

i xx = (5–30)2 + (15–30)2 + (25–30)2  + (35–30)2 + (45–30)2 +(55–30)2

                         = 625 + 225 + 25 + 25 + 225 + 625 = 1750

Let us now take another set B of 31 observations 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45. The

mean of these observations is y = 30

Note that both the sets A and B of observations have a mean of 30.

Now, the sum of squares of  deviations of observations for set B from the mean y  is

given by

∑
=

−
31

1

2)(
i

i yy = (15–30)2 +(16–30)2 + (17–30)2  + ...+ (44–30)2 +(45–30)2

=  (–15)2 +(–14)2 + ...+ (–1)2 + 02 + 12 + 22 + 32 + ...+ 142 + 152

=  2 [152 + 142 + ... + 12]

= 
15 (15 1) (30 1)

2
6

× + +
× = 5 × 16 × 31 = 2480

(Because sum of squares of first n natural numbers = 
( 1) (2 1)

6

n n n+ +
. Here n = 15)
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If ∑
=

−
n

i

i xx
1

2)(  is simply our measure of dispersion or scatter about mean, we

will tend to say that the set A of six observations has a lesser dispersion about the mean

than the set B of 31 observations, even though the observations in set A are more

scattered from the mean (the range of deviations being from –25 to 25) than in the set

B (where the range of deviations is from –15 to 15).

This is also clear from the following diagrams.

For the set A, we have

For the set B, we have

Thus, we can say that the sum of squares of deviations from the mean is not a proper

measure of dispersion. To overcome this difficulty we take the mean of the squares of

the deviations, i.e., we take ∑
=

−
n

i

i xx
n 1

2)(
1

. In case of the set A, we have

1
Mean

6
= × 1750 = 291.67 and in case of the set B, it is 

1

31
× 2480 = 80.

This indicates that the scatter or dispersion is more in set A than  the scatter or dispersion

in set B, which confirms with the geometrical representation of the two sets.

Thus, we can take  ∑ − 2)(
1

xx
n

i as a quantity which leads to a proper measure

of dispersion. This number, i.e., mean of the squares of the deviations from mean is

called the variance and is denoted by 2σ (read as sigma square). Therefore, the

variance of n observations x
1
, x

2
,..., x

n
 is given by

Fig 13.5

Fig 13.6
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Deviations from mean

(x
i
– x )

∑
=

−=
n

i

i xx
n 1

22 )(
1

σ

13.5.1  Standard Deviation In the calculation of variance, we find that the units of

individual observations x
i
 and the unit of their mean x are different from that of variance,

since variance involves the sum of squares of  (x
i
– x ). For this reason, the  proper

measure of dispersion about the mean of a set of observations is expressed as positive

square-root of the variance and is called standard deviation. Therefore, the standard

deviation, usually denoted by σ , is given by

∑
=

−=
n

i

i xx
n 1

2
)(

1
σ ... (1)

Let us take the following example to illustrate the calculation of variance and

hence, standard deviation of  ungrouped data.

Example 8  Find the variance of the following data:

6, 8, 10, 12, 14, 16, 18, 20, 22, 24

Solution From the given data we can form the following Table 13.7. The mean is

calculated by step-deviation method taking 14 as assumed mean. The number of

observations is n = 10

Table 13.7

x
i

14

2

i
i

x
d

−
= (x

i
– x )

6 –4 –9 81

8 –3 –7 49

10 –2 –5 25

12 –1 –3 9

14 0 –1 1

16 1 1 1

18 2 3 9

20 3 5 25

22 4 7 49

24 5 9 81

5 330
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Therefore Mean x = assumed mean + h
n

d
n

i

i

×
∑
=1

 =
5

14 2 15
10

+ × =

and Variance ( 2σ ) =

10
2

1

1
)i

i

( x x
n =

−∑ = 
1

330
10

×  = 33

Thus Standard deviation (σ ) = 33 5 74.=
13.5.2 Standard deviation of a discrete frequency distribution Let the given discrete

frequency distribution be

x : x
1
,   x

2
,     x

3
 ,. . . , x

n

f : f
1
,    f

2
,     f

3
 ,. . . ,  f

n

In this case standard deviation  ( ) 2

1

1
( )

N

n

i i

i

f x xσ
=

= −∑ ... (2)

where 
1

N
n

i

i

f
=

=∑ .

Let us take up following example.

Example 9  Find the variance and standard deviation for the following data:

x
i

4 8 11 17 20 24 32

f
i

3 5  9 5 4 3 1

Solution Presenting the data in tabular form (Table 13.8), we get

Table 13.8

x
i

f
i

f
i 
x

i
x

i 
– x

2)( xxi − f
i

2)( xxi −

4 3 12 –10 100 300

8 5 40 –6 36 180

11 9 99 –3 9 81

17 5 85 3 9 45

20 4 80 6 36 144

24 3 72 10 100 300

32 1 32 18 324 324

30 420 1374
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N = 30, ( )
7 7

2

1 1

420, 1374i i i i

i i

f x f x x
= =

= − =∑ ∑

Therefore

7

1 1
420 14

N 30

i i

i

f x

x == = × =
∑

Hence variance 2( )σ  =

7
2

1

1
( )

N
i i

i

f x x
=

−∑

=
1

30
 × 1374 = 45.8

and  Standard deviation 8.45)( =σ  = 6.77

13.5.3  Standard deviation of a continuous frequency distribution The given

continuous frequency distribution can be represented as a discrete frequency distribution

by replacing each class by its mid-point. Then, the standard deviation is calculated by

the technique adopted in the case of a discrete frequency distribution.

If there is a frequency distribution of n classes each class defined by its mid-point

x
i
 with frequency f

i
, the standard deviation will be obtained by the formula

2

1

1
( )

N

n

i i

i

f x xσ
=

= −∑ ,

where x is the mean of the distribution and 
1

N
n

i

i

f
=

=∑ .

Another formula for standard deviation We know that

Variance 2( )σ  =
2

1

1
( )

N

n

i i

i

f x x
=

−∑ = 
2 2

1

1
( 2 )

N

n

i i i

i

f x x x x
=

+ −∑

=
2 2

1 1 1

1
2

N

n n n

i i i i i

i i i

f x x f x f x
= = =

 
+ − 

 
∑ ∑ ∑

 =
2 2

1 1 1

1
2

N

n n n

i i i i i

i i i

f x x f x x f
= = =

 
+ − 

 
∑ ∑ ∑
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=
2 2

1

1
N 2 . N

N =

  
+ −  

  
 

n

i i

i

f x x x x  
1 1

1
Here or N

N

n n

i i i i

i i

x f x x f x
= =

 
= = 

 
∑ ∑

= 
22 2

1

2
1

N

n

i i

i

x xf x
=

+ −∑  
22

1

1

N

n

i i

i

xf x
=

= −∑

or 2
σ =

2

2

2 2=1

2
1 1 =1

1 1
N

N N N

n

i in n n
i

i i i i i i

i i i

f x

f x f x f x
− =

 
       − = −        
 

∑
∑ ∑ ∑

Thus, standard deviation ( )
2

2

1 =1

1
N

N

n n

i i i i

i i

f x f xσ
=

= −
 
 
 

∑ ∑                    ... (3)

Example 10 Calculate the mean, variance and standard deviation for the following

distribution :

Class 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Frequency 3 7 12 15 8 3 2

Solution From the given data, we construct the following Table 13.9.

Table 13.9

Class Frequency Mid-point f
i
x

i
(x

i
– x )2 f

i
(x

i
– x )2

(f
i
) (x

i
)

30-40 3 35 105 729 2187

40-50 7 45 315 289 2023

50-60 12 55 660 49 588

60-70 15 65 975 9 135

70-80 8 75 600 169 1352

80-90 3 85 255 529 1587

90-100 2 95 190 1089 2178

50 3100 10050
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Thus

7

1

1 3100
Mean 62

N 50
i i

i

x f x
=

= = =∑

Variance ( )2σ  =

7
2

1

1
( )

N
i i

i

f x x
=

−∑

=
1

10050
50

×  = 201

and Standard deviation ( ) 201 14 18.σ = =

Example 11  Find the standard deviation for the following data :

x
i

3 8 13 18 23

f
i

7 10 15 10 6

Solution Let us form the following Table 13.10:

Table 13.10

x
i

f
i

f
i
x

i
x

i
2 f

i
x

i
2

3 7 21 9 63

8 10 80 64 640

13 15 195 169 2535

18 10 180 324 3240

23 6 138 529 3174

48 614 9652

Now, by formula (3), we have

σ  = ( )221
N

N
i i i if x f x−∑ ∑

=
21

48 9652 (614)
48

× −

=
1

463296 376996
48

−
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=
1

293 77
48

.×  = 6.12

Therefore, Standard deviation  (σ ) = 6.12

13.5.4.  Shortcut method to find variance and standard deviation Sometimes the

values of x
i
 in a discrete distribution or the mid points x

i
 of different classes in a

continuous distribution are large and so the calculation of mean and variance becomes

tedious and time consuming. By using step-deviation method, it is possible to simplify

the procedure.

Let the assumed mean be ‘A’ and the scale be reduced to
h

1
 times (h being the

width of class-intervals). Let the step-deviations or the new values be y
i
.

i.e.
A

i

i

x
y

h

−
=   or  x

i
 = A + hy

i
... (1)

We know that
1

N

n

i i

i

f x

x
==
∑

... (2)

Replacing x
i
 from (1) in (2), we get

x  = 1

A )

N

n

i i

i

f ( hy

=

+∑

=
1 1

1
A

N

n n

i i i

i i

f h f y

= =

+
 
 
 
∑ ∑ =

1 1

1
A

N
i

n n

i i

i i

f h f y
= =

 
+ 

 
∑ ∑

= 1N
A

N N

n

i i

i

f y

. h =+
∑

    
1

because N
n

i

i

f
=

 
= 

 
∑

Thus x = A + h y ... (3)

Now Variance of the variable x,  
2 2

1

1
)

N

n

x i i

i

f ( x xσ
=

= −∑

=
2

1

1
(A A )

N

n

i i

i

f hy h y
=

+ − −∑ (Using (1) and (3))

2024-25



280 MATHEMATICS

=
2 2

1

1
( )

N

n

i i

i

f h y y
=

−∑

=

2
2

1

( )
N

n

i i

i

h
f y y

=

−∑ = h2 × variance of the variable y
i

i.e. 2

xσ =
22

yh σ

or xσ = yhσ ... (4)

From (3) and  (4), we have

xσ =

2

2

1 1

N
N

n n

i i i i

i i

h
f y f y

= =

 
−  
 

∑ ∑ ... (5)

Let us solve Example 11 by the short-cut method and using formula (5)

Examples 12  Calculate mean, variance and standard deviation for the following

distribution.

Classes 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Frequency 3 7 12 15 8 3 2

Solution Let the assumed mean A = 65. Here h = 10

We obtain the following Table 13.11 from the given data :

Table 13.11

Class Frequency Mid-point y
i
= 

65

10

ix −
y

i
2 f

i  
y

i
f

i 
y

i
2

f
i

x
i

30-40 3 35 – 3 9 – 9 27

40-50 7 45 – 2 4 – 14 28

50-60 12 55 – 1 1 – 12 12

60-70 15 65 0 0 0 0

70-80 8 75 1 1 8 8

80-90 3 85 2 4 6 12

9 0-100 2 95 3 9 6 18

N=50 – 15 105
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Therefore x =
15

A 65 10 62
50 50

i if y
h+ × = − × =∑

Variance 2σ  = ( )2
2 2

N
2

N
i i

h
f y f yi i

 −∑ ∑  

=
( )210 2

50 105 (–15)
2(50)

 × −  

=
1

[5250 225] 201
25

− =

and standard deviation ( ) 201σ =    = 14.18

  EXERCISE 13.2

Find the mean and variance for each of the data in Exercies 1 to 5.

  1. 6, 7, 10, 12, 13, 4, 8, 12

  2. First n natural numbers

  3. First 10 multiples of 3

  4. x
i

6 10 14 18 24 28 30

f
i

2 4 7 12 8 4 3

  5. x
i

92 93 97 98 102 104 109

f
i

3 2 3 2 6 3 3

  6. Find the mean and standard deviation using short-cut method.

x
i

60 61 62 63 64 65 66 67 68

f
i

2 1 12 29 25 12 10 4 5

Find the mean and variance for the following frequency distributions in Exercises

7 and 8.

  7. Classes 0-30 30-60 60-90 90-120 120-150 150-180 180-210

Frequencies 2 3 5 10 3 5 2
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  8. Classes 0-10 10-20 20-30 30-40 40-50

Frequencies 5 8 15 16 6

  9. Find the mean, variance and standard deviation using short-cut method

Height 70-75 75-80 80-85 85-90 90-95 95-100 100-105105-110 110-115

in cms

No. of 3 4 7 7 15 9 6 6 3

children

10. The diameters of circles (in mm) drawn in a design are given below:

 Diameters    33-36     37-40    41-44  45-48 49-52

 No. of circles     15         17             21    22             25

Calculate the standard deviation and mean diameter of the circles.

[ Hint First make the data continuous by making the classes as 32.5-36.5, 36.5-40.5,

40.5-44.5, 44.5 - 48.5, 48.5 - 52.5 and then proceed.]

Miscellaneous Examples

Example 13 The variance of 20 observations is 5. If each observation is multiplied by

2, find the new variance of the resulting observations.

Solution  Let the observations be x
1
, x

2
, ..., x

20
 and x  be their mean. Given that

variance = 5 and n = 20. We know that

Variance ( )2

20
2

1

1
( )i

i

x x
n

σ
=

= −∑ , i.e., 

20
2

1

1
5 ( )

20
i

i

x x
=

= −∑

or

20
2

1

( )i

i

x x
=

−∑ = 100

... (1)

If each observation is multiplied by 2, and the new resulting observations are y
i 
, then

y
i
 = 2x

i
 i.e., x

i
 = iy

2

1
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Therefore

20 20

1 1

1 1
2

20
i i

i i

y y x
n = =

= =∑ ∑ = 

20

1

1
2

20
i

i

. x
=
∑

i.e. y = 2 x    or   x = y
2

1

Substituting the values of x
i
 and x  in (1), we get

220

1

1 1
100

2 2
i

i

y y
=

 − = 
 

∑ , i.e., ∑
=

=−
20

1

2 400)(
i

i yy

Thus the variance of new observations = 
21

400 20 2 5
20

× = = ×

ANote   The reader may note that if each observation is multiplied by a constant

k, the variance of the resulting observations becomes k2 times the original variance.

Example14 The mean of  5 observations is 4.4 and their variance is 8.24. If three of

the observations are 1, 2 and 6, find the other two observations.

Solution  Let the other two observations be x and y.

Therefore,  the series is 1, 2, 6, x,  y.

Now Mean x = 4.4 = 
1 2 6

5

x y+ + + +

or 22 = 9 + x + y

Therefore x + y = 13 ... (1)

Also variance = 8.24 = 
2

5

1

)(
1

xx
n i

i∑
=

−

i.e. 8.24 = ( ) ( ) ( ) ( )2 2 2 22 21
3 4 2 4 1 6 2 4 4 ( ) 2 4 4

5
. . . x y . x y . + + + + − × + + × 

or 41.20 = 11.56 + 5.76 + 2.56 + x2 + y2 –8.8 × 13 + 38.72

Therefore x2 + y2  = 97 ... (2)

But from (1), we have

x2 + y2  + 2xy = 169 ... (3)

From (2) and (3), we have

2xy = 72 ... (4)

Subtracting (4) from (2), we get
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x2 + y2  –  2xy = 97 – 72  i.e.  (x – y)2 = 25

or x – y = ± 5 ... (5)

So, from (1) and (5), we get

x = 9, y = 4 when x – y = 5

or x = 4, y = 9 when x – y = – 5

Thus, the remaining observations are 4 and 9.

Example 15 If each of the observation x
1
, x

2
, ...,x

n 
is increased by ‘a’, where a is a

negative or positive number, show that the variance remains unchanged.

Solution  Let x  be the mean of x
1
, x

2
, ...,x

n 
. Then the variance is given by

2

1σ  = 
2

1

1
( )

n

i

i

x x
n =

−∑

If ‘a is added to each observation, the new observations will be

y
i
 = x

i
 + a ... (1)

Let the mean of the new observations be y . Then

y =
1 1

1 1
( )

n n

i i

i i

y x a
n n= =

= +∑ ∑

=
1 1

1 n n

i

i i

x a
n = =

 
+ 

 
∑ ∑  = ax

n

na
x

n

n

i

i +=+∑
=1

1

i.e. y = x + a ... (2)

Thus, the variance of the new observations

2

2σ =
2

1

1
( )

n

i

i

y y
n =

−∑ = 
2)(

1

1

axax
n

n

i

i −−+∑
=

[Using (1) and (2)]

=
2

1

1
( )

n

i

i

x x
n =

−∑ = 2

1σ

Thus, the variance of the new observations is same as that of the original observations.

ANote   We may note that adding (or subtracting) a positive number to (or from)

each observation of a group does not affect the variance.

Example 16 The mean and standard deviation of 100 observations were calculated as

40 and 5.1, respectively by a student who took by mistake 50 instead of 40 for one

observation. What are the correct mean and standard deviation?
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Solution Given that number of observations (n) = 100

Incorrect mean ( x ) = 40,

Incorrect standard deviation (σ) = 5.1

We know that  ∑
=

=
n

i

ix
n

x
1

1

i.e.

100

1

1
40

100
i

i

x
=

= ∑   or    

100

1

i

i

x
=
∑ = 4000

i.e. Incorrect sum of observations = 4000

Thus the correct sum of observations = Incorrect sum – 50 + 40

= 4000 – 50 + 40 = 3990

Hence Correct mean  = 
correct sum 3990

100 100
= = 39.9

Also Standard deviation σ  =

2

2

2
1 1

1 1n n

i i

i i

x x
n n= =

 
−  

 
∑ ∑

= ( )2
1

21
xx

n

n

i

i −∑
=

i.e. 5.1 = 
2 2

1

1
Incorrect (40)

100

n

i

i

x

=

× −∑

or 26.01 = 
2

1

1
Incorrect

100

n

i

i

x

=

× ∑ – 1600

Therefore Incorrect
2

1

n

i

i

x
=
∑ = 100 (26.01 + 1600)  = 162601

Now Correct  
2

1

n

i

i

x
=
∑ = Incorrect ∑

=

n

i

ix
1

2

– (50)2 + (40)2

= 162601 – 2500 + 1600 =  161701

Therefore Correct standard deviation
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= 

2

2
Correct

(Correct mean)
i

x

n
−

∑

= 
2161701

(39 9)
100

.−

= 1617 01 1592 01. .−  = 25  = 5

Miscellaneous Exercise On Chapter 13

1. The mean and variance of eight observations are 9 and 9.25, respectively. If six

of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.

2. The mean and variance of 7 observations are 8 and 16, respectively. If five of the

observations are 2, 4, 10, 12, 14. Find the remaining two observations.

3. The mean and standard deviation of six observations are 8 and 4, respectively. If

each observation is multiplied by 3, find the new mean and new standard deviation

of the resulting observations.

4. Given that x is the mean and σ2 is the variance of n observations x
1
, x

2
, ...,x

n
.

Prove that the mean and variance of the observations ax
1
, ax

2
, ax

3
, ...., ax

n
 are

a x  and a2 σ2, respectively, (a ≠ 0).

5. The mean and standard deviation of 20 observations are found to be 10 and 2,

respectively. On rechecking, it was found that an observation 8 was incorrect.

Calculate the correct mean and standard deviation in each of the following cases:

(i) If wrong item is omitted. (ii) If it is replaced by 12.

6. The mean and standard deviation of a group of 100 observations were found to

be 20 and 3, respectively. Later on it was found that three observations were

incorrect, which were recorded as 21, 21 and 18. Find the mean and standard

deviation if the incorrect observations are omitted.

Summary

®Measures of dispersion Range, Quartile deviation, mean deviation, variance,

standard deviation are measures of dispersion.

Range = Maximum Value – Minimum Value

®Mean deviation for ungrouped data

M
M.D. ( ) M.D. (M)

i ix – x x –
x ,

n n
= =∑ ∑

2024-25



  STATISTICS            287

®Mean deviation for grouped data

M.D.
N

M.D. M
M

N
where N( )

�
, ( )

�
,x

f x x f x
f

i i i i

i= = =∑ ∑ ∑
®Variance and standard deviation for ungrouped data

2 21
( )ix – x

n
σ = ∑ ,

21
( – )ix x

n
σ = ∑

®Variance and standard deviation of a discrete frequency distribution

( ) ( )2 22 1 1
,

N N
i i i if x x f x xσ σ= − = −∑ ∑

®Variance and standard deviation of a continuous frequency distribution

( ) ( )222 21 1
, N

N N
i i i i i if x x f x f xσ σ= − = −∑ ∑ ∑

®Shortcut method to find variance and standard deviation.

( )
2

22 2

2
N

N
i i i i

h
f y f yσ  = −  ∑ ∑ , ( )22

N
N

i i i i

h
f y f yσ = −∑ ∑ ,

where 
Ai

i

x
y

h

−
=

Historical Note

‘Statistics’ is derived from the Latin word ‘status’ which means a political

state. This suggests that statistics is as old as human civilisation. In the year 3050

B.C., perhaps the first census was held in Egypt. In India also, about 2000 years

ago, we had an efficient system of collecting administrative statistics, particularly,

during the regime of Chandra Gupta Maurya (324-300 B.C.). The system of

collecting data related to births and deaths is mentioned in Kautilya’s Arthshastra

(around 300 B.C.) A detailed account of administrative surveys conducted during

Akbar’s regime is given in Ain-I-Akbari written by Abul Fazl.

Captain John Graunt of London (1620-1674) is known as father of vital

statistics due to his studies on statistics of births and deaths. Jacob Bernoulli

(1654-1705) stated the Law of Large numbers in his book “Ars Conjectandi’,

published in 1713.
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— vvvvv —

The theoretical development of statistics came during the mid seventeenth

century and continued after that with the introduction of theory of games and

chance (i.e., probability). Francis Galton (1822-1921), an Englishman, pioneered

the use of statistical methods, in the field of Biometry. Karl Pearson (1857-1936)

contributed a lot to the development of statistical studies with his discovery

of Chi square test and foundation of statistical laboratory in England (1911).

Sir Ronald A. Fisher (1890-1962), known as the Father of modern statistics,

applied it to various diversified fields such as Genetics, Biometry, Education,

Agriculture, etc.

2024-25




